

Chichester and District Archaeology Society

Results of the geophysical investigation of The Trundle, Goodwood Estate, Lavant, West Sussex - 2023

STEVEN CLEVERLY - FEBRUARY 2024

Table of Contents

1.	Summary	3
2.	Background	3
3.	The site	10
4.	Health and safety	11
5.	Methodology	11
6.	Survey results: magnetometry	13
7.	Survey results: resistivity	17
8.	Discussion of results	18
	Acknowledgements	
	Bibliography	
	PENDIX A	
ΑP	PENDIX B	27
AP	PENDIX C	30

1. Summary

Chichester and District Archaeology Society (CDAS) undertook a geophysical investigation of the site listed by Historic England (HE) as the 'Trundle hillfort, causewayed enclosure and associated remains' (Historic England Listing Map Search 1018034).

Where access was available, this 2023 survey confirmed ditches attributed to the Neolithic causewayed enclosure. Apart from the causewayed enclosure, the survey also identifies responses suggesting more ditches and pits (dates unknown), and other responses that conceivably relate to the installation of a radio mast during World War 2. The survey however offers no demonstrable evidence for the presence of prehistoric structures such as roundhouses.

CDAS members worked on the survey between the 19th of June until the 30th of June 2023.

2. Background

A prominent feature on the South Downs, The Trundle (formerly known as St Roche's Hill) gives all-around views to its visitor and plenty of archaeology to witness and walk among.

The place-name really describes the most visible part of the archaeology, the Iron Age univallate hillfort on top of St Roche's Hill - 'Trundle' being an old English word for a hoop. The Trundle comprises a single boundary earthwork in the form of a defensive ditch and associated banks with two entrances and dates to the fourth to third centuries BC. It was not, however, until 1925 (Curwen 1929) that an earlier monument, a Neolithic causewayed enclosure, was recognised through aerial photography and an image taken by Mr O.G.S. Crawford. This identification resulted in excavations undertaken in 1928 (Curwen 1929) and 1930 (Curwen 1931). The dates for the Neolithic monument's construction have recently been reviewed. Carbon dates of select finds from the site have been modelled against the Bayesian

mathematical formula (Whittle, A., et al. 2015) and suggest the monument dates to the mid-fourth millennium BC.

In 1928 Curwen produced a site plan, some of the hidden archaeology being proposed through the use of 'bosing', a technique of thumping the ground with a heavy object over a buried feature and interpreting the sound tone returned. Curwen opened a number of trenches across ditches of the causewayed enclosure. along with some of the pits which he also identified through 'bosing'. His trenches were principally located on the northwestern side of the hillfort's interior (Figure 1). Curwen confirmed, on the basis of diagnostic artefacts, that the causewayed ditches were of Neolithic origin. He further suggested that there was a later infilling of these ditches during the early Iron Age, presumably with spoil from the causewayed banks. Some of the pits were dated to the early Iron Age. He opened one trench to the northeast of the Iron Age rampart (Figure 1), in an area where the Iron Age rampart appears to overlie segments of the Neolithic causeway, in order to understand the relationship between the two monuments. This trench recovered little dating evidence but revealed a skeleton of a young female. Curwen suggested the remains dated to the Bronze Age on the basis of morphology and its stratigraphic relationship: it clearly post-dated the abandonment of the Neolithic enclosure and pre-dated the construction of the Iron Age rampart.

In 1930, Curwen returned to the site and concentrated his endeavours on the interior of the Iron Age hillfort's eastern entrance (Figure 1). Here Curwen revealed three large pits, multiple post-holes and 'flanking ditches' arranged in association, he suggested, as a double gateway, but with a later 'rearrangement of the defences', in favour of two single gates to form a barbican (Curwen 1931, p127).

Later history includes a medieval chapel dedicated to St Roche, in existence at the earliest from the late 14th century, but its demise likely coming within the 16th century following the reformation (Oswald 1995, p25). A post-medieval windmill is also said to have occupied the same area (Figure 1), until its destruction by lightning in 1773 (Oswald 1995, p25). Two marl pits also existed, one within the interior of the hillfort, as well as World War 2 structures and compounds (Figure 1) associated with airborne radio communication.

In recent times, these compounds have been repurposed for commercial telecommunication purposes. As a result of planning applications submitted to them in 1980 and 1981, archaeological investigations took place within each compound.

In 1980, a trench was opened within the western telecommunications compound (Figure 1), deliberately located to flank one of Curwen's Neolithic causewayed ditch excavations of 1928. The findings of the 1980 excavation confirmed Curwen's earlier assessments (Aldsworth & Bedwin 1981) relating to its Neolithic construction and suggested an Iron Age episode of levelling.

Two planning applications proposed for the eastern telecommunications compound, resulted in geophysical surveys undertaken prior to the works there. The first was a resistance survey in 1987 (Field Archaeology Unit, Institute of Archaeology 1987). The second was another resistance survey, and a very limited magnetometer survey (due to magnetic interferences) in 1989 (Gaffney & Gater 1989). The 1987 survey recorded responses suggesting evidence for 'two circuits of Neolithic bank and discontinuous ditch' as well as 'irregular pits' (Field Archaeology Unit, Institute of Archaeology 1987). The magnetometer survey of 1989 was severely constrained by the close proximity of the radio masts and would be of no additional value. The resistance survey confirmed the earlier, 1987 results, but with enhanced clarity.

With the advent of LiDAR (Light Detection and Ranging), its data offers an opportunity to see the archaeology as never before (Figure 2).

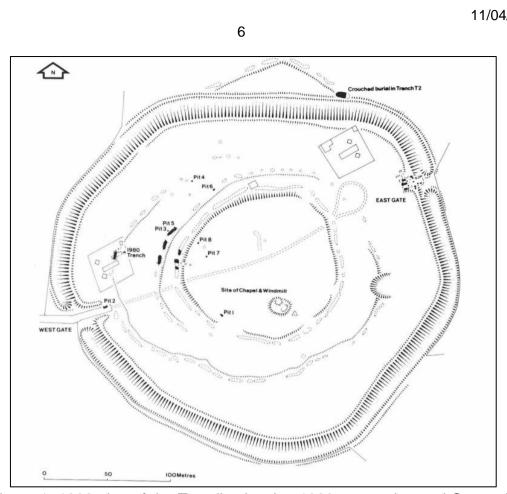


Figure 1: 1980 plan of the Trundle showing 1980 excavation and Curwen's excavation of 1928 and 1930 (Aldsworth & Bedwin 1981)

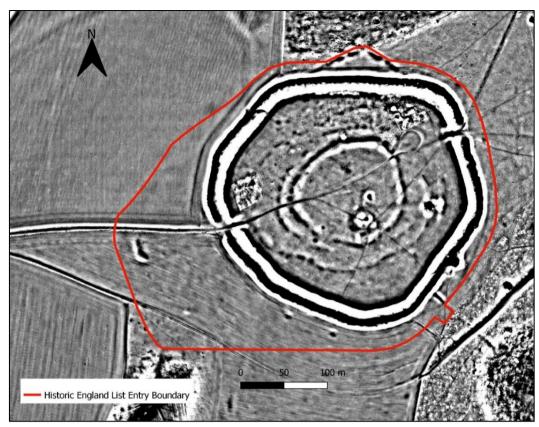


Figure 2: LiDAR data for the survey area and immediate surroundings (Courtesy of Fugro Geospatial and South Downs National Park Authority)

With the consent of the Goodwood Estate and Mr Mark Roberts, the Estate's Archaeological Advisor, CDAS proposed to undertake a geophysical survey of all the accessible parts within the area encompassing the scheduled monument (National Heritage List Number 1018034). This was largely planned to be being carried out by magnetometry (Figure 3), with resistivity (Figure 4) where the Chapel and windmill sites are documented as having existed.

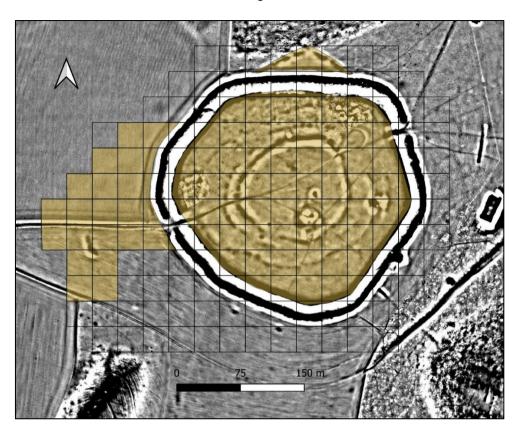


Figure 3: Area proposed to be surveyed by Magnetometer

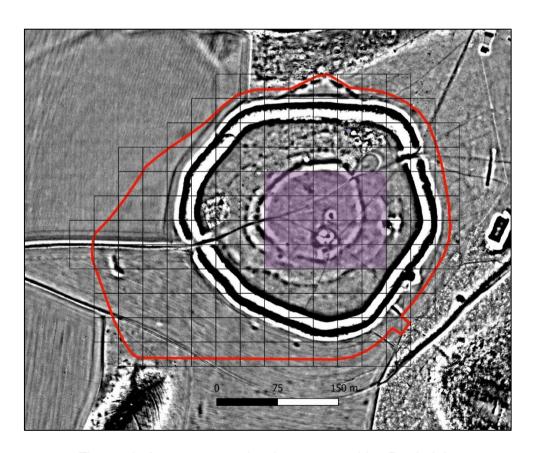


Figure 4: Area proposed to be surveyed by Resistivity

This report was produced by Chichester and District Archaeology Society and is confidential. No part may be published without permission of the Society

9

As well as this being an opportunity to survey the site using contemporary survey techniques, supplementing the past archaeological investigations and modern LiDAR, there were a series of specific aspirations: -

To enhance the existing knowledge of the site and help to identify previously unknown features.

To further the sympathetic management of the site. The results supporting Goodwood Estate with their management plans.

To investigate to what extent the buried remains reflect those visible as earthworks.

To investigate whether Neolithic and Iron Age features can be differentiated.

To establish whether there is evidence of structures other than the interrupted banks and ditches of the causewayed enclosure, e.g. houses, long-barrows, flint-mines, etc.

To expand the existing plan of the causewayed enclosure. Do the interrupted banks and ditches extend beyond the defences of the later hillfort?

To produce evidence of Bronze Age activity, such as round-barrows, cross-ridge dykes, etc.?

To confirm the identification of the Iron Age hillfort as one of the 'developed' type. Does it contain features that confirm this interpretation, e.g., roundhouses, storage pits, shrines, trackways, etc.?

To seek any evidence for the presence of the medieval chapel, a post-medieval beacon or the post-medieval windmill.

To seek evidence that the WW2 facilities were connected by underground services.

A Schedule 42 licence application was applied for (Cleverly 2023) and duly granted by Historic England (Reade 2023).

During the period of survey, youngsters from the Chichester Young Archaeologist Club visited the site and walked a few lines of resistivity. Subsequent to their visit, their data was deleted and not used for this report.

3. The site

The site is in the ownership of the Goodwood Estate. The Trundle's interior is set aside as pasture, as indeed is the remainder of the hill. The grass to the south of the east-west track located on the western side of the monument (Figure 3) was, unfortunately, too tall to allow the survey.

The Trundle lies in the civil parish of Lavant in the District of Chichester, West Sussex – approximately 3.5 miles north-east of Chichester (Figure 5).

The site sits on the South Downs chalkland, 206mtrs at its highest above Ordnance Datum, and centred on NGR 487738 111073.

The area lies between two geological formations (British Geological Survey 2023).

- The majority of the Trundle's interior and the southern slope of St Roche's Hill:
 Tarrant Chalk Member Chalk. Sedimentary bedrock formed between 83.6 and
 72.1 million years ago during the Cretaceous period.
- Along the northern edge, within the Trundle's interior, and the remainder of St Roche's Hill: Newhaven Chalk Formation - Chalk. Sedimentary bedrock formed between 86.3 and 72.1 million years ago during the Cretaceous period.

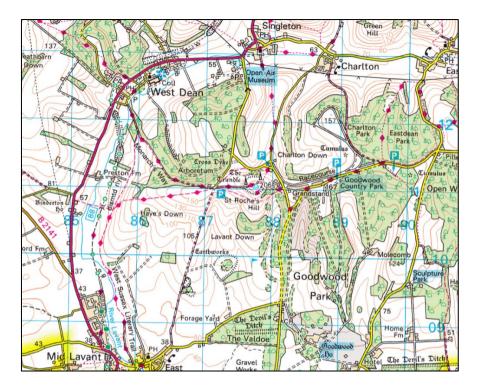


Figure 5: Location of site (https://www.bing.com/maps/)
relative to Singleton, West Dean and Goodwood Park

4. Health and safety

A standard CDAS surveying Health and Safety Risk Assessment was prepared and shared with the volunteers prior to undertaking the geophysical survey. The assessment took into consideration that the site is an open space available to the public and grazing animals. Therefore, the welfare of the visiting public and the grazing animals was to be safeguarded.

5. Methodology

The survey utilised the following equipment:

Resistivity

Geoscan RM15D resistivity meter was employed.

- Readings were taken at one metre intervals on both the x and y-axis.
- Each grid was surveyed in zigzag mode.
- The probes were 0.5 metres apart.

Magnetometry

The CDAS Bartington Grad 601 and a loaned Geoscan RM85 magnetometer were used. The Bartington covered the majority of the ground.

- Readings were taken at quarter metre intervals on the y-axis and one metre interval on the x-axis.
- Each grid was surveyed in zigzag mode.

Both the resistivity and magnetometry survey results were processed using Snuffler version 1.32 (freeware).

A Theodolite was used to establish a baseline for the setting out of 30 metre survey grids. The establishment of the survey grids is documented within Appendix A.

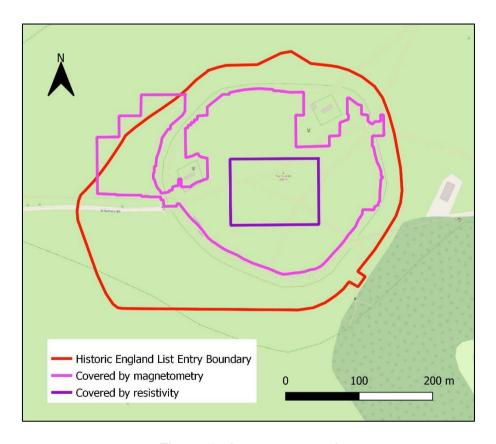


Figure 6: Areas surveyed

6. <u>Survey results: magnetometry</u>

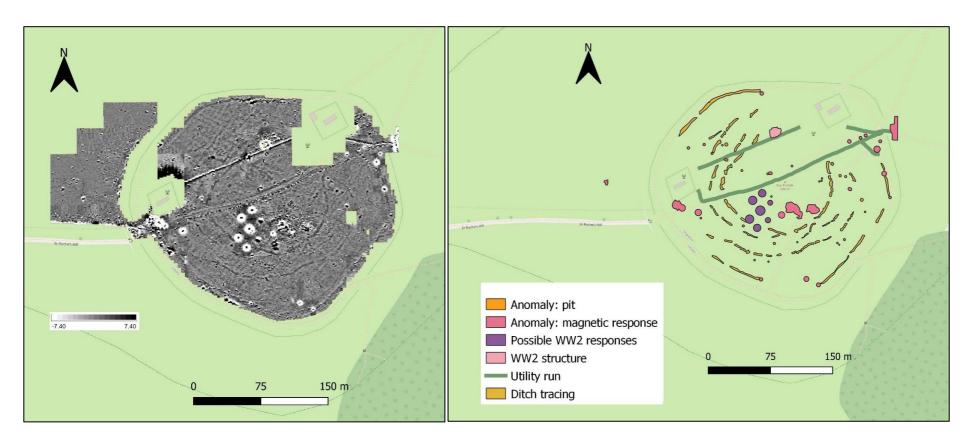


Figure 7: Magnetometer responses, including range bar

Figure 8: Schematic interpreting magnetometer responses

A number of observations need to be made following the magnetometry survey (see Figures 7 and 8).

Regarding the steep sided ramparts, the ability of the magnetometer operator to keep their foothold and balance was challenging walking up them and meant that the majority of the peaks of the ramparts were not surveyed. Nor indeed was there any attempt (or reason) to survey within the Trundle's ditch. It had been intended to survey the causewayed features to the north, immediately outside of the Trundle's ramparts. However, the very steep topography there was considered unsafe to the operator and therefore was not attempted. The character of the causewayed segments in this location is however evident through LiDAR data (Figure 2).

Prior to the main survey, a series of test runs (under Schedule 42 approval) were undertaken to identify a reasonable distance needed between the telecommunication compounds, and their likely electro-magnetic effects, and the magnetometer operator. An example of where this reasonable distance had not been maintained, can be seen in Figure 7, through the dark interference immediately to the north of the western compound. A healthy distance had been planned for, but on processing the results showed that an exclusion zone could have been greater.

The segmented ditches attributed to the Neolithic causewayed monument are clear in the geophysical survey results and in the majority of cases marry those recorded on Curwen's 1928 plan (Curwen 1929) and in the LiDAR data (*Courtesy of Fugro Geospatial and South Downs National Park Authority*). Not seen, however, in the magnetometer results is evidence related to the banks associated with the segmented ditches. However, any visitor to the interior, once they knew where to look, can see very slight raised areas adjacent to very shallow ditches.

The survey does highlight a number of 'other' potential ditches around the site. There is also evidence of the paths and/or vehicular trackways.

Seen in Figure 9, a post-WW2 aerial image of 1949, is a white linear feature that stretches between both radio compounds and runs close to the southern side of a Nissan shelter. This feature corresponds to a suggested utility run, seen in the magnetometer survey, presumably providing an electricity supply to each establishment then, and continuing to do so at the time of the 2023 survey.

There are further strong circular responses in the magnetometer survey, which are grouped around the area where white circular features are visible in Figure 9 (in the middle of the aerial image and above the vehicular track). A further response in the magnetometer results of another possible utility run, traces itself across the interior of the site, beside the east-west track and passes close to the most northern of these strong circular responses.

Not covered by this 2023 survey, the 1949 aerial image (Figure 9) appears to show a number of possible slit trenches, presumably of WW2 vintage and almost entirely backfilled. These can be seen along the bottom of the photo - further evidence on how busy this hill was during the second world war.

Figure 9: The Trundle, St Roche's Hill, from the north, 1949

(@Historic England)

Just outside the Trundle by the eastern entrance, are some very strong magnetic responses. During the survey, buried cast-iron remnants of bracing posts for a fence line, were seen in this area. An example is shown in Figure 10. The fence was associated with controlling crowds viewing horse racing on the nearby Goodwood Racecourse. It is visible on mid. 20th century maps but was taken down in c.1990.

Figure 10: Buried cast-iron fence post

7. <u>Survey results: resistivity</u>

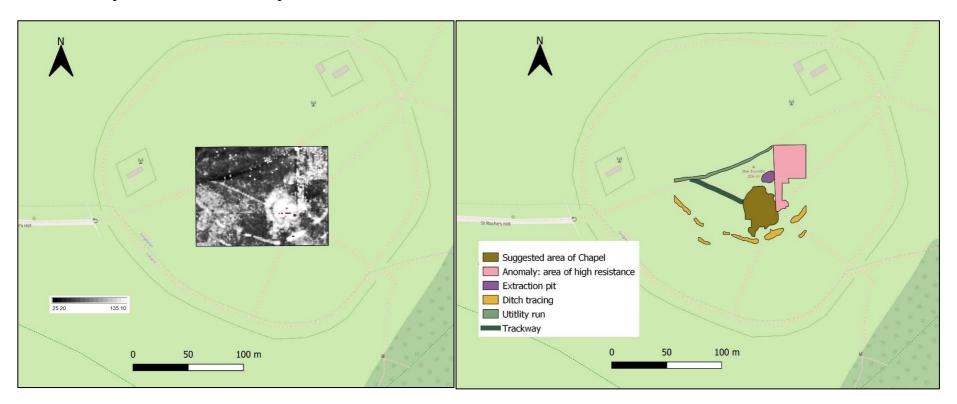


Figure 11: Resistivity responses, including range bar

Figure 12: Schematic plotting of resistivity responses

Although the site and the nature of the investigation was better suited to magnetometry, a portion of the site was surveyed using resistivity (Figures 11 and 12). The area chosen for this corresponds to the suggested locations for the Chapel and windmill.

In its results, the resistance data shows a path running northwest to southeast, coming off the main trackway which runs east-west across the interior of the Trundle and lies parallel to the utility run seen in the magnetometer results.

The Neolithic causewayed ditches in this area come through well, but evidence for any associated banks is unclear. Where the magnetometer survey identified strong circular responses, the resistance survey identifies a spread of material, perhaps associated with the destruction of the circular features once they go out of use.

The survey picks up on the one extraction/marl pit inside the site's interior, and likewise, strong general responses from the suggested site of the Chapel and windmill – but nothing to indicate the structure of either building.

The survey results also suggest a spread of resistance, top right. Examination suggests some form to this spread, there being a number of places where straight sides are evident.

8. <u>Discussion of results</u>

Much of the prehistoric nature of the site was already known through the examination of Curwen's site plan (Curwen 1929), albeit constructed through the very basic technique of 'bosing' confirmed by the rather more reliable LiDAR data (Courtesy of Fugro Geospatial and South Downs National Park Authority).

The results of this 2023 survey confirmed much of that already recorded, principally the ditches of the Neolithic causewayed circuits and spirals. In conjunction with the

limited resistivity and the magnetometer survey responses, these can be overlain to match and support the earlier evidence. No evidence of the causewayed banks is seen in the geophysical responses.

Curwen had the benefit of a site absent of radio communication compounds. His results indicated that the spirals of the causewayed enclosure ran under the location of the modern western compound. However, he did not record (or 'hear') any such features under the eastern compound. The geophysical surveys of 1987 (Field Archaeology Unit, Institute of Archaeology 1987) and 1989 (Gaffney & Gater 1989) in the eastern compound suggest their presence.

There have been suggestions that the Neolithic causewayed circuits extend outside of the Trundle along the western slopes of the hill. In LiDAR visualizations, faint shadows there suggest the possible presence of ditches, and consequently the HE List Entry extends on that side. The 2023 magnetometer results however offer no evidence of ditches.

There are pit like features recorded in the geophysical survey. Curwen records such features, a few of which he investigated and suggests as having their origins in the early Iron Age. If so, it may be possible to differentiate the Neolithic and Iron Age features in the 2023 results.

The results of this 2023 survey offer no evidence for any prehistoric structures, such as roundhouses, within the Trundle's interior. It is not possible to see any grouping of post-holes, hearths or drip gullies, nor evidence for 'fifteen possible house platforms' (Oswlad 1995, p14) dispersed inside the interior. Curwen (1929) suggests that the Neolithic ditches his team investigated were filled and the surrounding area levelled during the early Iron Age. It is possible that disturbance of the ground through these processes has obscured the magnetic evidence for house platforms. Figure 13, generated using LiDAR data, gives a good indication of how little free space for occupation was available without a levelling of the site in the Iron Age. The centre of the interior was presumably the best option as a large available space, but the 2023 survey results show no proof for roundhouses/internal structures. With the

development of the hillfort, its ramparts and ditches and Curwen's (1931) identification of a gateway system across the eastern entrance, it is hard to imagine that this would not have been a 'settled' site, even if for short spells.

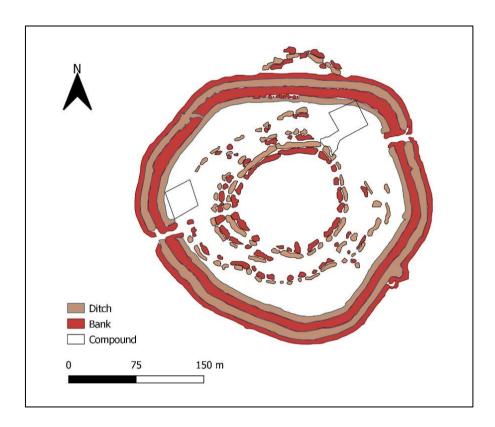


Figure 13: Schematic of Neolithic and Iron Age features

(Courtesy of Fugro Geospatial and South Downs National

Park Authority)

Where the Chapel and Windmill are suggested as having been located, the 2023 results do not show any clearly identifiable forms which can be attributed to these structures. It is presumed that the demolition of the Chapel left a thick spread of building debris that obscures any foundation evidence. The straight edges seen in the resistance responses to the north-east of that survey location, do suggest some interesting structures. However, it is not possible to identify what these may have related to.

Both of today's telecommunications compounds have their origins in WW2. The responses in the 2023 magnetometer survey traces the path for their power supply,

presumably in use during the time of the 2023 survey as it produces a strong response. However, the 2023 survey identifies a possible predecessor to these WW2 radio compounds. In review of strong circular responses seen both in the 2023 magnetometer survey (Figure 8), and the white circular features in the 1949 aerial photograph (Figure 9), both suggest a layout not dissimilar in form to the visible WW2 masts and is perhaps a location for an earlier configuration, superseded by the establishment of these other two. Certainly, the white features in the aerial photo are still visible and not yet grassed over by 1949. The magnetometer results also show that another power supply, running east-west across the Trundle's interior and close by the southern edge of the vehicular trackway, passes close by the location of this possible earlier radio site. The power supply is one probably no longer in use, presenting a weaker magnetic response than that running between the two existing compounds.

This survey allowed a contemporary study with modern surveying techniques and should be seen as supplementing those past archaeological investigations and that which modern LiDAR offers. It is hoped that the 2023 results are able to support the Goodwood Estate in their management plans for the site.

It is suggested that there are over 80 known causewayed enclosure monuments in the British Isles (Historic England, p2). Within a 6-mile area, between St Roche's Hill and Barkhale Camp (Figure 14), four of these Neolithic causewayed monuments can be found (Bury Hill is suggested as being Neolithic but with a continuous ditched circuit). Modern geophysical survey would also benefit these monuments and complement the studies of them that have already taken place.

Figure 14: Neolithic causewayed enclosures relative to St Roche's Hill

9. Acknowledgements

The researchers are extremely grateful to Mr Mark Roberts for his negotiation, permission, and support for this project. Our appreciation extends to Goodwood Estate.

We also recognise the invaluable support and guidance from Mr James Kenny, Archaeology Officer for Chichester District Council.

10. Bibliography

Aldsworth, F.G., & Bedwin, Owen., 1981 *Excavations at the Trundle, 1980*, Sussex Archaeological Collections (Volume 119, article, pp.209-214)

British Geological Survey - http://mapapps.bgs.ac.uk/geologyofbritain/home.html., viewed on 8th September 2023.

Cleverly, S., 2023 Section 42 Licence Application in Respect of National Heritage List Number 1018034, CDAS Archive

Curwen, C., 1929 *Excavations in the Trundle, Goodwood, 1928*, Sussex Archaeological Collections (Volume 70, article, pp.33-85)

Curwen, C., 1931 Excavations in the Trundle, Second Season, 1930, Sussex Archaeological Collections (Volume 72, article, pp.100-149)

Historic England, 2018 *Causewayed Enclosures: Introductions of Heritage Assets*, Swindon, Historic England

Historic England Listing Map Search - https://historicengland.org.uk/listing/the-list/list-entry/1018034f, Viewed on 27th May 2023

Kenny, J., (Gaffney, C. & Gater, J.A., 1989) Report on Geophysical Survey, The Trundle West Sussex, July 1989, Email to Steven Cleverly, 8th June 2023

Kenny, J., (Field Archaeology Unit, Institute of Archaeology, University College London 1987) *The Trundle, West Sussex: A Geophysical Survey of the Proposed British Telecom Goodwood Radio Sation Site*, Email to Steven Cleverly, 8th June 2023

LiDAR data - Courtesy of Fugro Geospatial and South Downs National Park Authority, through the Historic Environment Record held by Chichester District Council

Oswald, A., 1995 A Causewayed Enclosure And The Trundle Hillfort on St. Roche's Hill, Singleton, West Sussex: An Earthwork Survey by The Royal Commission on the Historical Monuments of England, RCHME

Reade, C., 2023, Email to Steven Cleverly, 8th June 2023

Whittle, A., & Healy, F., & Bayliss, A., 2015 *Gathering Time: Dating the Early Neolithic Enclosures of Southern Britian and Ireland*, Oxbow Books, United Kingdom

Figure 5: https://www.bing.com/maps/, viewed on 8th September 2023

Figure 9: [EAW023279] *The Trundle, St Roche's Hill, from the north, 1949*, Historic England, via Historic Environment Scotland, Email to Steven Cleverly, 29th February 2024

25

APPENDIX A

The approach to setting up the baseline from which to spawn the survey grids is as follows.

Based upon the exposed northern end of the building located within the eastern radio compound, 30 metre square grids and partials were created – Figure 15.

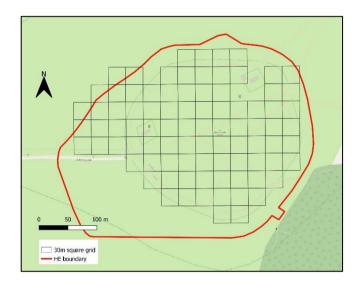


Figure 15: 30mtr grids laid out

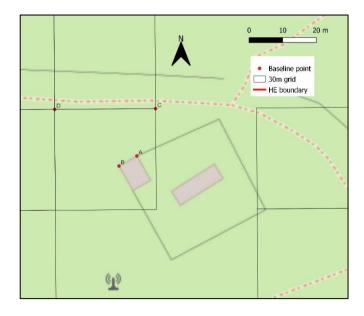


Figure 16: Baseline creation

- A 30-metre baseline running from C to D (Figure 16), was established from which to form the basis of subsequent grids.
- Building corner, point A, measures at 17.85mtrs to point C, and 33.90mtrs to point D.
- Building corner, point B, measures at 20.70mtrs to point C, and 31.80mtrs to point D.

APPENDIX B

<u>Historic England Geophysical Survey Summary Questionnaire</u>

Survey Details

Name of Site: The Trundle hillfort, causewayed enclosure and associated remains.

County: West Sussex

NGR Grid Reference (Centre of survey to nearest 100m): SU 87744 11049 (X/Eastings 487743, Y/Northing 111049)

Start Date: 19th of June 2023 **End Date:** 30th of June 2023

Geology at site (Drift and Solid):

The area lies between two geological formations (British Geological Survey 2023).

- The majority of the Trundle's interior and the southern slope of St Roche's Hill:
 Tarrant Chalk Member Chalk. Sedimentary bedrock formed between 83.6
 and 72.1 million years ago during the Cretaceous period.
- Along the northern edge, within the Trundle's interior, and the remainder of St Roche's Hill: Newhaven Chalk Formation - Chalk. Sedimentary bedrock formed between 86.3 and 72.1 million years ago during the Cretaceous period.

Known archaeological Sites/Monuments covered by the survey: National Heritage List Number 1018034

Archaeological Sites/Monument types detected by survey: Neolithic features associated with the causewayed enclosure. Pits (Date =?) and probable WW2 infrastructure.

Surveyor: Steven Cleverly with Chichester and District Archaeology Society volunteers

Name of Client, if any: Mr Mark Roberts (Goodwood Estate archaeology advisor) and Goodwood Estate

Purpose of Survey:

The geophysical survey intended to assist in a better understanding of the site. In particular the results will support Goodwood Estate with their management plans for the site.

It was also an opportunity to survey by applying contemporary survey techniques, supplementing the 20th century plans and modern LiDAR.

To investigate to what extent the buried remains reflect those visible as earthworks.

To investigate whether Neolithic and Iron Age features can be differentiated.

To establish whether there is evidence of structures other than the interrupted banks and ditches of the causewayed enclosure, e.g. houses, long-barrows, flint-mines, etc.

To expand the existing plan of the causewayed enclosure. Do the interrupted banks and ditches extend beyond the defences of the later hillfort?

To produce evidence of Bronze Age activity, such as round-barrows, cross-ridge dykes, etc.?

To confirm the identification of the Iron Age hillfort as one of the 'developed' type. Does it contain features that confirm this interpretation, e.g., roundhouses, storage pits, shrines, trackways, etc.?

To seek any evidence for the presence of the medieval chapel, a post-medieval beacon or the post-medieval windmill.

To seek evidence that the WW2 facilities were connected by underground services.

Location of:

- a) Primary archive, i.e. raw data, electronic archive etc: Steven Cleverly
- **b) Full Report:** Chichester and District Council Historic Environment Record and logged with Chichester and District Archaeology Society archive

APPENDIX C

Technical Details

Type of Survey (Use term from attached list or specify other): Resistivity

Area Surveyed, if applicable (In hectares to one decimal place):

Traverse Separation, if regular: One metre Reading/Sample Interval: One metre

Type, Make and model of Instrumentation: Geoscan RM15D

For Resistivity Survey:

1. Probe configuration: Single 0.5m twin array

2. Probe Spacing: Approximately 0.75 metre spacing

Land use at the time of the survey (Use term/terms from the attached list or specify other): Grassland - Pasture

Additional Remarks (Please mention any other technical aspects of the survey that have not been covered by the above questions such as sampling strategy, nonstandard technique, problems with equipment etc.): N/A

Technical Details

Type of Survey (Use term from attached list or specify other): Magnetometer

Area Surveyed, if applicable (In hectares to one decimal place):

Traverse Separation, if regular: One metre Reading/Sample Interval: 0.25m

Type, Make and model of Instrumentation: Bartington Grad 601 and Geoscan RM85

Land use at the time of the survey (Use term/terms from the attached list or specify other): Grassland - Pasture

Additional Remarks (Please mention any other technical aspects of the survey that have not been covered by the above questions such as sampling strategy, non standard technique, problems with equipment etc.): N/A